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Abstract. Numerical simulation of individual open quantum systems has proven advantages 
over density operator computations. Quantum state diffusion with a moving basis (MQSD) 
provides a practical numerical simulation method which takes full advantage of the localization of 
quantum states into wavepackets occupying small regions of classical phase space. Following 
and extending the original proposal of Percival, Alber and Sreimle, we show tM MQSD can 
provide a further gain over ordinary QSD and other quantum trajectory methods of many orders 
of magnitude in computational space and time. Because of these gains, it is even possible 
to calculate an open quantum system trajectory when the corresponding isolated system is 
intractable. MQSD is particularly advantageous where classical or semiclassical dynamics provides 
an adequate qualitative picture but is numerically inaccurate because of signifioant quantum 
effects. The principles are illustrated by computations for the quantum Duffing oscillator and for 
second-harmonic generation in quantum optics. Potenrial applications in atomic and molecular 
dynamics, quantum circuils and quanNm computation are suggested. 

1. Introduction 

Most quantum systems are not even approximately isolated, but open, so that they are 
significantly affected by the environment. This interaction is important for atoms and 
molecules in gaseous or condensed matter environments, which broaden spectral lines. It 
affects the motion of molecules and the rates of chemical reactions. It is important for 
signalling near the quantum limit, where the environment produces the noise through which 
the signal must be detected, and it is important in quantum optics, where it produces the 
dissipation that destroys coherence. 

Quantum state diffusion with a moving basis (MQSD) is a method of representing and 
computing the evolution of individual open quantum systems. It has already been used by 
Percival et al 1391 to analyse the motion of a particle in a Penning trap. Here we provide a 
general theory of the method, and provide a guide as to when it should be used in preference 
to other methods. Second-harmonic generation in optics and the quantum Duffing oscillator 
are used as illustrations. 

Because stochastic environmental fluctuations affect the evolution of an individual open 
quantum system, it is represented traditionally by a density operator p, which satisfies a 
linear master equation. No attempt is made to represent the evolution of individual pure 
states explicitly. This approach is adequate when the master equation has analytic solutions, 
or when the number of basis states N of Hilbert space required for numerical solution is not 
too large. But for large N it often breaks down in practice long before the corresponding 
numerical solution of the Schrodinger equation, because the number of elements of a density 
matrix increases as NZ. 
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Numerical simulation of individual open quantum systems, represented by pure states 
which move along quantum trajectories, has proven advantages over density operator 
computations. Quantum state diffusion (QSD) provides such a numerical simulation, in 
which each state diffuses continuously in the state space and satisfies a nonlinear Langevin- 
It6 diffusion equation, determined uniquely by the master equation as shown in €251 and 
described in section 2. This diffusion often produces a localization of quantum states into 
wavepackets that occupy small moving regions R of classical phase space. Such localization 
is a special characteristic of QSD that is usually absent in other quantum state simulation 
methods [16]. 

For a system of f  freedoms, a Planck cell of volume (2irh)f corresponds to one quantum 
state. The number of basis states used to represent a system need not be much greater than 
the number of Planck cells in the region R, provided that the basis follows the motion of the 
wavepacket in phase space. Quantum state diffusion with a moving basis (MQSD) provides 
a practical numerical simulation method which takes full advantage of the localization, by 
referring the quantum state to a moving origin (q,  p )  in phase space. This origin lies at the 
phase space centroid of the quantum state, determined by the current quantum expectations 
(a) and (P). 

Numerical methods for solving the time-dependent Schrbdinger equation for an isolated 
system using moving wavepackets have long been used in chemical physics [31,33,6,32]. 
But as the ordinary Schrbdinger equation disperses wavepackets instead of localizing them 
in phase space, the applicability of these wavepacket approaches is very restricted. 

For some systems, computation using MQSD is orders of magnitude more economical in 
terms of computer storage space and computation time than other quantum state simulation 
methods, or the solution of master equations for the density operator. We give examples in 
which it is very difficult to see how any other current method of numerical solution could 
be used. 

Section 2 presents the basic QSD equations and their derivation. The problems of 
the choice of boundary between system and environment are described. There is a brief 
comparison with other quantum trajectory methods, sometimes called quantum jump or 
relative state methods [5. 7, 14, 151. Localization is defined and discussed in section 3, 
with reffrence to localization theorems and numerical examples. This is followed by the 
definition of the moving basis, using excited coherent states, and the derivation of the MQSD 
equations. 

Section 4 applies MQSD to two challenging examples, the Duffing oscillator and second- 
harmonic generation. These two examples show how effective MQSD can be in bridging the 
gap between those quantum problems where the number of basis states required in a fixed 
basis is relatively small, and the quasiclassical limit where the number offuted basis states 
would be so large as to rule out any practical use. This section is completed by a crude 
analysis of comparative computing times for the solution of an open system problem using 
MQSD and the numerical solution of the Schradinger equation for a similar isolated system. 

Section 5 concludes with a comparison of methods for open systems and some 
recommendations for their use, followed by the prospects for using MQsD in various 
applications. 

2. Quantum state difflrsion (QSD) 

Quantum state diffusion represents the evolution of a quantum system through a 
correspondence between the solutions of the master equation for the ensemble density 
operator p and the solutions of a Langevin-It8 diffusion equation for the normalized pure 
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state vector 11)) of an individual system of the ensemble [25]. 
A solution of the Langevin-It6 equation for the motion 

of an individual Brownian particle in position space represents a single member of an 
ensemble whose distribution function satisfies the corresponding Fokker-Planck equation. 
Similarly, a solution of the QSD equation for the diffusion of a pure quantum state in 
state space represents a single member of an ensemble whose density operator satisfies 
the corresponding master equation. In each case the effect of the environment can be 
represented either by the stochastic evolution of an individual system or by the deterministic 
evolution of the~distribution. For Brownian motion the evolution of the individual system 
gives a more detailed picture of what happens to an individual particle than the evolution 
of the distribution function. Similarly, for open quantum systems, the evolution of the 
individual pure states of QSD gives a more detailed picture of what happens to an individual 
quantum system than the evolution of the density operator. This is particularly important 
for applications like single-particle traps, quantum noise in gravitational wave detection, 
quantum circuits and quantum computers. 

In QSD, quantum expectations (. . e )  for individual systems, and ensemble means M are 
distinct. The traditional quantum expectation TrpG of an operator G for a mixed state of 
an open system is equivalent in QSD to an ensemble mean over the quantum expectations 
of the pure states I@).~That is 

An analogy is helpful. 

TrpG = M(G) = M ( @ l G [ @ ) .  (1) 

If the master equation has the standard Lindblad 1341 form 

P = - ~ [ H , P I + C ( L , ~ ~ - $ ~ ~ P - I P ~ L , )  m (2) 

then the corresponding QSD equation is a nonlinear stochastic differential equation for the 
normalized state vector I @ )  of the ensemble, whose general differential form is 1251 

where H is a Hamiltonian and L, are Lindblad operators which represent the effect of the 
environment on the system in a Markov approximation. 

The first sum in (3) represents the ‘drift’ of the state vector in the state space and the 
second sum the random fluctuations. The d& are independent complex differential random 
variables, with normalized independent white noise in their real and imaginary parts, leading 
to an isotropic Brownian motion or Wiener process in the complex tm,-plane. These satisfy 
the conditions 

M d & = O  M e n d $ = O  Md::d&=&,dt (4) 

where M represents a mean over the ensemble. The complex Wiener process is normalized 
to dt, so the independent real and imaginary Wiener processes are each normalized to dt/2. 
This is the same normalization as in [26, 27, 381, but is different from that of [25]. The 
distribution (4) is invariant under unitary transformations in the linear space of the d$. 

(L,) = (@lLl@) is the quantum expectation of L, for state I@), The density operator 
is given by the mean over the projectors onto the quantum states of the ensemble: 

P = ~ l w q l .  (5) 
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It can be verified that if the pure states of the ensemble satisfy the QSD equation (3), then the 
density operator (5) satisfies the master equation (2). There are many diffusion equations 
for pure states I*) which give the same master equation for the density operator. The 
uniqueness of the QSD equations follows kom a principle of unitary invariance in operator 
space. 

This is most clearly illustrated by a QSD equation with a single Lindblad operator L 
In that case unitary transformation in operator space is multiplication by a scalar phase 
factor U of modulus unity. Then it is obvious by inspection that if L is replaced by uL, 
the master equation, and hence the solution of the master equation, is unchanged. In the 
corresponding QSD equation, the replacement of L by uLis the same as the replacement of d t  
by U dt ,  but since the distribution of the elementary differential fluctuations de is invariant 
for multiplication by a phase factor, the QSD equations are also unchanged. This is not 
hue if the fluctuations are real or otherwise do not satisfy unitary invariance in fluctuation 
space, as in [ 19, 221. The QSD equations are in this respect the only diffusion equations 
that respect this unitary invariance property in the onedimensional operator space, and they 
are unique up to a physically irrelevant external timedependent phase factor for the state 
vector. 

This result generalizes to an arbitrary number of Lindblad operators if U is taken to be 
a general unitary transformation in the linear space of the Lindblad operators. The general 
result was first given for QSD equations in [25], following the statement of an invariance 
principle by Di6si [9], and the derivation for a Fokker-Planck equation in state space in 
1371. 

In either the traditional or QSD formulation for open systems, there is always a problem 
as to where to put the boundary between system and environment. If the system is made 
too small, then important effects are neglected, and errors are made. If it is made too 
large by including too much of the environment, then the dimension N of the basis state 
space becomes too large for the equations to be solved. In practice there is a compromise. 
Often, in addition, the problem is simplified by approximating the effects of complicated 
environments by simple operators. 

Because of the localization property discussed in the next section, QSD has the property 
that it has no need of a separate measurement hypothesis, as shown in detail with examples 
in [25-271. A measuring apparatus is just one type of environment, and its effects can be 
represented by simple operators. Alternatively, measurement can be represented in detail by 
pushing the boundary between system and environment out so far that the system includes 
the measuring apparatus. This is useful in establishing the representation of measurement 
by operators, but results in a system too complicated to solve directly. Localization and the 
representation of measuring apparatus are needed for comparison with the relative state or 
quantum jump methods. 

QSD theory followed from research that was motivated by the desire to find an explicit 
physical representation of the measurement process. Following pioneering work of Bohm 
and Bub [2] and Pear1.e [35, 361, Gisin [ZO] introduced a simple example of quantum 
state diffusion with real fluctuations that was generalized by Di6si [9] and Gisin [;?I]. 
The complex It6 form of QSD was introduced in 1251. The detailed QSD theory and its 
applications are described in [25-27,381. Diffusion in the space of quantum states also 
appears in connection with the theory of continuous quantum measurements as shown, for 
example, in the many references in [l, 51. 

Gisin and Percival [24] used QSD to describe a quantum jump experiment. Goetsch and 
Graham [28] used it to describe some nonlinear optical processes. Garraway and Knight 
[17] compared QSD and quantum jump simulations for two-photon processes, and in [18] 
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they compared the phase space picture of QSD and quantum jumps, showing that the former 
gives localization and the latter does not. Spiller and his co-workers applied QSD to thermal 
equilibrium 1441, studied chaos in a simple open quantum system 1451 and investigated open 
angular systems, such as quantum capacitors and rotors [46]. Gisin [23] investigated the 
Heisenberg picture for QSD. Further examples are given in [25-27,401. 

3. Localization and the~moving basis 

For a quantum system in a pure state, localization refers to dynamical variables and 
operators like position, momentum, energy and angular momentum which have classical 
equivalents. It is helpful to picture the localization in classical phase space. There are 
many phase space representations of quantum systems, such as the Wigner distribution, but 
these are not necessary to obtain a classical picture of the phase space localization of a 
quantum system. For that, it is only necessary to consider the expectations and variances 
of quantum dynamical variables, and then to picture these expectations and variances as if 
they represented the expectations and variances of classical quantities. 

The general theory of localization is treated in 1251 and in [38]. The Schrodinger 
evolution of a system usually produces delocalization or dispersion. The interaction of the 
system with its environment, by contrast, produces localization. 

It is convenient to consider these competing processes separately before considering 
them together. The dispersion is well known, since it occurs in isolated systems. The 
opposite extreme is an open system which interacts with its environment so strongly that 
the Schrodinger evolution can be neglected. This is a wide open system, and the theory of 
localization’for these systems has been treated in detail in [38]. 

For simple systems, earlier papers [25-271 had built up a picture in which interaction 
with the environment produced localization, sometimes to an eigenstate of an operator 
corresponding to a surface in phase space, but more commonly to a state which is localized 
to a wavepacket in phase space whose Heisenberg indeterminacy products are of the order 
of f i .  In [38] that picture was confirmed and extended. A general theory was presented, 
lower bounds were put on rates of self-localization, and bounds were put on asymptotic 
states. 

. .  

For a pure state I+), the expectation of a self-adjoint operator G is denoted 

(G)  = (IlrlGl+) (6) 

o*(G) = (6’) - (6)’. U) 

A = (Ma2(G))-’ .  (8) 

and the variance of the operator G is 

The localization A is defined as the inverse of the mean of the variance for the ensemble: 

The simplest theorem is for a wide open system in which there is only one self-adjoint 
Lindblad operator L in the state diffusion equation. It is shown that the rate of localization 
of Lis at least as fast as 2 ([38], section 3): 

dlljdt 2 2. (9) 
Because Lindblad operators have the dimension of time-”’, the rate is dimensionless. 

This localization is~towards a surface in phase space defined by the dynamical variable 
L, and is characteristic of interaction with apparatus that measures L. More general and 
more interesting is the case where there are at least 2f operators, where f is the number of 
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freedoms, and the surfaces for the corresponding dynamical variables define points in phase 
space. In that case at least f pairs of operators will not commute. The simplest example is 
a one freedom system with two conjugate variables X, Y whose operators satisfy 

[X,Q = ifr . (10) 

In this case it is shown that the state localizes and asymptotically approaches a wavepacket 
with minimum Heisenberg indeterminacy product. It is also shown that operators that are not 
self-adjoint, such as annihilation and creation operators, can localize to wavepackets. In the 
more realistic examples that we study numerically in the following section, the localization 
has to compete with the dispersion due to the Schrodinger evolution, the wavepacket is 
more dispersed, and its dispersion often varies considerably as a function of time. 

For general open systems there is a physical competition between the dispersion due to 
the Hamiltonian and the localization due to the state diffusion. There is no general theory 
for this, but there are many numerical examples of localization, such as [25] for the forced 
damped oscillator and [27] for localization in one well of a double well, and phase space 
localization by position localization and Hamiltonian coupling of position and momentum. 
Halliwell and Zoupas [30] have provided a general theory for the evolution of Gaussian 
wavepackets for an important model, generalizing a result of Di6si [SI. 

From the theorems and the numerical examples it would appear that the localization 
of wavepackets to relatively small regions of phase space is the norm, so that the limiting 
behaviour on a classical scale is the direct representation of classical states as points in 
phase space, rather than the more abstract surfaces defined by action functions that satisfy 
the Hamilton-Jacobi equation. 

For our purposes the most important consequence of the localization of quantum 
trajectories around phase space trajectories is, that by continually changing the basis, it 
is often possible to reduce the number of basis states needed to represent the wavepacket by 
many orders of magnitude. If a wavepacket is localized about a point (4. p )  in phase space 
far from the origin, it requires a great many of the usual number states In) to represent it. But 
fewer excited coherent basis states 14, p ,  n) = D(4, p)ln), are needed, with corresponding 
savings in computer storage space and computation time. These states are defined using the 
coherent state displacement operator, 

D(q, p )  = e x p i  p Q - q P  . (11) 

The separation of the representation into a classical part (q, p )  and a quantum part 19, p .  n) 
is called the moving basis, or, as in [39], the mixed representation. 

i (  1 
In this basis, the usual creation and annihilation operators are modified 

a = a(q, p )  + (q + ip)I/JZ a+ = at(q, p )  + (q - ip)I/JZ (12) 

where a(q, p )  is the local annihilation operator (with (q. p )  as the origin) and I is the 
identity operator. The effect of the local operators on the excited coherent states is given 
by 

a(q, p)Iq. p , n )  = Jiilq, p ,  n - I )  
Similarly, 

a+(q, p)lq.  p ,n )  = &Ti 14, p ,  n + 1). (13) 

Q = Q ( q , p ) + q l  P = P ( q , p ) + p l  (14) 

where 

Q(q, p )  = (a@, p )  + at(q, p ) ) l - h  P(q. p )  = -i(a(q, p )  - a+(q, p ) ) / - h .  ( 1 3  
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Care must be taken to avoid ambiguity in the external phase factors. Normally, different 
displacement operators do not commute: nor is the product of two displacement operators 
a standard displacement operator. In both cases there is an additional phase factor: 

(16) 
In order to retain an unambiguous relation to the standard fixed basis states, this additional 
phase factor must be removed. Fortunately this is simple, as it is the same for all the moving 
basis states. 

The numerical algorithm follows directly. As the integration proceeds, the phase point 
expectation 

(17) 

l (gp ' -pd ) /Z  , Wq', p')lq, p, n) = 1q + q', p + p'. n)e 

(%, SP) = ((W, PI), (Wq, P))) 

I@) + D(-sq, -8p)W) (18) 

(4. P )  + (4 + sq, P +&PI. (19) 

The time between basis adjustments can be optimized in various ways, depending on the 
problem, the degree of localization, and the difficulty of carrying out the basis change. 

drifts 'away from zero. The basis is then shifted, 

and the classical phase point (q, p )  adjusted: 

In principle, there is another way to make the basis change. If the phase space point 

(4 .  P)  = ((Q), (P)) (20) 
and state I@) relative to (4, p )  as origin are used to define the state, then we can include 
fie change of basis in the evolution equation for I@). This leads to a set of simultaneous 
differential equations in q,  p ,  and I@); in integrating these equations, both the QSD evolution 
and the basis shift are done automatically. This simultaneous moving basis method is 
attractive for a number of reasons; the states always remain in an optimally 'localized' 
basis, and therefore can take the best advantage of the QSD localization effects to minimize 
the number of necessiuy basis states. There is no need for an additional step for the basis 
change. In practice, the simultaneous moving b&is method results in a considerable increase 
in programming complexity, and may have numerical stability problems. As yet the method 
has not proved itself sufficiently, so we have not used it. 

Implementing the moving basis algorithm on a computer is straightforward. Each set 
of normalized fluctuations d&, determines a quantum trajectory through (3), which can be 
simulated using discrete time steps 61, using a Runge-Kutta algorithm for the deterministic 
part, and an Euler method for the stochastic part (but see also [47]). Suppose that at time 
t = f o  the state I@(ro)) is represented in the basis 140, pa. n). centred at 

(40% PO) = ( ( @ ( ~ o ) I Q W ( ~ ) ) ~  (Wo)lPI@(~o))). 

(41>PI) = ~ ~ 1 1 . ~ ~ o + s t ~ i ~ l @ ~ ~ o + s t ~ ~ ~ ~ 1 1 . ~ ~ o + s t ~ l ~ I 1 1 . ~ ~ o + s ~ ~ ~ ~  # (40,PO). 

(21) 

(22) 
The computational advantage of a small number of basis states is then retained by 

changing the representation to the shifted basis 141, PI, n) centred at q1 and PI. This shift 
in the origin of the basis represents the elementary single step of the moving basis of MQSD. 

The components of \@(to + s f ) )  can be computed using the expressions given above. 
The computing time needed for the basis shift is of the same order of magnitude as for 
computing a single discrete time step of (3). Shifting the basis once every discrete time step 
could therefore double the computing time, depending on the complexity of the Hamiltonian 

Then after one discrete time step, the .expectations in this basis shift to 
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and the number of degrees of freedom. On the other hand. the reduced number of basis 
vectors needed to represent states in the moving basis can lead to savings far larger than a 
factor of 2. 

In one example of second-harmonic generation described in the following section, two 
modes of the electromagnetic field interact. Using the moving basis reduces the number of 
basis vectors needed by a factor of 100 in each mode. The total number of basis vectors 
needed is thus reduced by a factor of 10 000, leading to reduction in computing time by a 
factor of 10000/2 = 5000. Furthermore, the fixed basis would exceed ihe memory capacity 
of most existing computers. 

The QSD equation (3) can contain both localizing and delocalizing terms. Nonlinear 
terms in the Hamiltonian tend to spread the wavefunction in phase space, whereas the 
Lindblad terms localize. Accordingly, the width of the wavepackets varies along a typical 
trajectory. We use this to reduce the computing time even further by dynamically adjusting 
the number of basis vectors. Our criterion for this adjustment depends on parameters E << 1, 
the cut-offprobabiiiiy. and &ad, the pad size, which represents the number of boundary 
basis states that are checked for significant probability. We require the total probability of 
the top N,,d states to be no greater than E ,  increasing and decreasing the number of states 
actually used accordingly, as the integration proceeds along the quantum trajectory. 

4. Examples: the Duffig oscillator and second-harmonic generation 

The quantum mechanics of systems whose classical limit exhibits dissipative chaos is an 
interesting problem. Dissipation is relatively difficult to treat in quantum mechanics. The 
best of the commonly used techniques is the solution of the master equation, but as we have 
pointed out, solving the master equation numerically can be an extremely difficult problem. 
Perhaps because of this, quantum dissipative chaos has been neglected by comparison with 
quantum Hamiltonian chaos. Clearly the QSD method for open systems is eminently suitable 
for such dissipative systems. Recently Spiller and Ralph [45] applied QSD to a dissipative 
chaotic system. 

The Duffing oscillator is particularly appropriate for applying MQSD, as the classical 
system has been widely studied [29]. This system has also been treated quantum 
mechanically in the decoherent histones formalism [3, 41, which has been shown to have 
connections to QSD [IO]. This oscillator consists of a particle moving in one dimension in 
the two-welled potential 

(23) 

Dissipative chaos can be produced by adding both dissipation (of the form -2rk) and a 
periodic driving force (of the form g COS(I)). 

By using either the master equation or QSD, it, is relatively simple to calculate the 
evolution of this system far from the classical limit, for example, when ft = 1. But it is 
also very important to study the classical limit of quantum chaos, to see how the relatively 
well understood properties of classical chaos appear in quantum systems. This limit is 
conveniently represented by decreasing ft, which increases the number of fixed basis states 
required. With A = 1, about ten states are needed to simulate the system with accuracy. 
On approaching the classical limit, the number of states quickly becomes impractical. In a 
semiclassical regime with A c IO4, more than 10 000 states are needed; the density operator 
method would require storage and computation with a prohibitive 10' real numbers. This, 
like most nonlinear problems, is exacerbated by the fact that the potential needs much more 

x4 x2 
V ( x )  = - - -. 

4 2  
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Figure 1. Poincad surface for ex- 
pectation values of x versus p for the 
forced, damped Duffing oscillator. plot- 
ted at times ofcanstant phase t, = k n .  
This is in the chaotic regime, with con- 
stants g = 0.3 and r = 0.125, and 
scaled up by a factor of 10D in I and 
p .  effectively reducing h by a factor of 
lo4. The systemis initially in the ground 
sme. Note that it would take -50000 
states to represmt this system with a 
non-moving basis. The cut-off proba- 
bility is E = 5 x 

computation than, for example, the simple harmonic oscillator. 
Using MQSD, however, this problem becomes tractable. In a chaotic system, the 

delocalizing forces are particularly strong in the neighbourhood of hyperbolic fixed points, 
where the dynamics spreads the wavepacket in phase space. However, the localizing effects 
of the environment always predominate. MQSD picks out a good local time-dependent basis, 
and the method rarely requires more than twenty states, usually about ten, just as in the 
small-scale quantum limit. This is easy to see by examining figure 1. 

Our second example is frequency doubling or second-harmonic generation, which is a 
standard process in quantum optics. The system consists of two optical modes of frequency 
W I  and 02 = 201 which interact in a cavity driven by a coherent external field with 

.frequency of Y w1 and amplitude f. The cavity modes are slightly damped and detued, 
with detuning pafameters SI = W I  -of and 82 = w2 - 2 0 f .  

The Hamiltonian in the interaction picture is ~ 

(24) 

where al and a2 are the annihilation operators of the two cavity modes, and x describes 
the strength of the nonlinear interaction between them. Damping of the two cavity modes 
is described by the Lindblad operators Ll = &al and b = &a2. The factors of 
-h are a consequence of normalization conventions used in the master equation (2)  which 
differ Gam those commonly used in quantum optics. The master equation for this problem 
first appeared in 112, 131. 

A direct numerical solution of the master equation for this problem is difficult because, 
in the Fock basis, the dimension of the effective Hilbert space is equal to the product of the 
photon number cut-offs in both modes and easily becomes very large. The problem becomes 
intractable even for moderate numbers of photons in each mode. Earlier treatments of this 
problem include [ I l ,  41, 43, 28, 481. 

The QSD method was employed for studying second-harmonic generation by Gisin and 
Percival [25] and Goetsch and Graham [28]. Both used a fixed Fock-state basis, and rather 
limited photon numbers. Gisin and Percival [25] improved the method slightly by using 
a lower as well as 'an upper cut-off. More recently, Zheng and Savage [48] applied the 
quantum jump method to the chaotic regime [42] of second-harmonic generation for large 
photon numbers. Using hundreds of hours on a 32-processor supercomputer, they succeed 
in simulating cases where the expectation of the photon number is of the order of 200 in 

H = fislafal +fis2afa2 + fif(at - all + ih-(aya2 X - a:d) 2 
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Figure 2. Photon number vmus dimensionless scaled time r = ~ l t  for a single second- 
harmonic generation trajectory. Full curve: fundamental mode (a!at); broken curve: second 
harmonic mode (a:a2). The parameters are KZIKI  = 0.25, SI/XI = &/KI = - I ,  X/KI = 0.5, 
and f/q = 62. At time t = 0, the system is in the vacuum slate. These parmeten lie in the 
chaotic regime of the corresponding classical system. The cut-aff probability is E = IO-'. 

each mode. Their Fock basis has 512 basis states in each mode, i.e. a total of 250000 basis 
states, a tour-de-force near the limits of their method. 

To illustrate the power of MQSD, we have computed trajectories for second-harmonic 
generation with parameters similar to the ones used by Zheng and Savage [48], but leading 
to photon numbers on average six times as large. For this problem, Zheng and Savage 
would have needed approximately 36 x 250 000 N lo7 basis states. Using the moving basis 
with an adaptive basis size, we computed a single trajectory in a few hours on a PC. The 
results shown in figure 2 were obtained using a cut-off probability E = lou3. The total 
number of basis states needed in the simulation varied between approximately 50 and 1000. 
Changing the cut-off probability to 6. = lowered the number of basis states needed 
to between approximately 40 and 200, clearly a strong dependence on E .  Surprisingly, the 
choice of cut-off probability affected the simulated expectation values only very slightly. 

It is interesting to compare estimates of computation space and time of a single MQSD 
run for an open system and the numerical solution of the Schrijdinger equation for the 
same system isolated from its environment. The former has diffusion and drift terms that 
increase the computation time for a single step of integration, but the localization reduces 
significantly the size of the basis needed for computation. The latter has fewer terms in 
the equation, but the Schrodinger dispersion increases the number of states needed for the 
representation. Clearly, for systems with more than one degree of freedom the advantage 
of MQSD is even greater, the savings in number of states going as the power of the number 
of freedoms. We can make this semiquantitative by the following analysis. 

Consider computing times. For each computation, let Nj- be the arithmetic mean of 
the number of basis states required for the j th  freedom. Let N be the geometric mean of 
all the N j ,  which is a useful measure for the number of basis stam. Let f be the number 
of freedoms. Then an estimate of the computing time Tmmp is given by K f i f ,  where the 
constant K is much larger for MQSD but fi is much larger for Scbrodinger. The ratio of 
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computing times is then 

The values of these numbers are highly problem-dependent. Clearly, for a problem with 
a complicated Hamiltonian and one simple Lindblad operator (as in the Duffing oscillator), 
the difference in time between the QSD and Schrodinger calculations will be much less than 
it would be for a simple Hamiltonian with several Lindblad operators (& in second-harmonic 
generation). 

One can estimate the values of these numbers for the problems described. For-the 
Duffing osciilator, K(Sch)/K(MQSD) sz 2/3, fi(Sch)/fi(MQSD) zz 1500, and f = 1. 
From equation (25) we expect that the ratio of computing time between MQSD and the 
Schrodinger equation is roughly In the case of second-harmonic generation, we 
have K(Sch)/K(MQSD) % 1/2, #(Sch)/fi(MQSD) sz 100 and f = 2, yielding a ratio 
of computing times of approximately 2 x Clearly, the advantage for multi-freedom 
problems is very great. 

5. Conclusions and prospects 

For the simplest open system problems, where analytic solutions are available, or the number 
N of basis states that are needed for the solution of the master equation is small, a density 
operator method is to be preferred. This method may be the only one available when 
very high accuracy is needed, because of the inevitable statistical errors in Monte Carlo 
simulations. 

Otherwise a method that simulates individual states is to be. preferred. 
Where the main interaction of the open system is with a measuring apparatus, which 

records the quantum state by counting, as with a photon counter, then the relative state or 
quantum jump method is the natural one and the best to use for numerical computations. The 
application of QSD produces rapid.changes in state that look like quantum jumps [25, 241, 
but this is numerically inefficient. 

When measurement is not the main interaction with an environment, then QSD is often 
more efficient. Examples a e  the types of thermal interaction that are of& represented 
by heat baths, interactions with a radiation field, and also continuous interactions with 
condensed matter or gaseous environments that are not to be considered as part of the 
system. such as in line broadening, molecular dynamics, noise in quantum circuits, etc. In 
these cases it is often simplest to use QSD with a fixed basis, and this is likely to be more 
efficient numerically than jumps. 

Where the interaction with the environment is sufficiently strong to produce strong 
localization during a significant part of the evolution, then MQSD is to be preferred. This 
is a very common situation, as the greater the environmental interaction, the greater the 
localization becomes. MQSD is feasible where there are several degrees of freedom, and there 
would be no hope of using other simulation methods. In some limiting cases quasiclassical 
methods can be used instead. MQSD is likely to be valuable in those situations that lie 
between those that are sufficiently simple to be simulated by other numerical means, and 
those for which a quasiclassical method can be used. 

Monte Carlo trajectory methods for open systems have been developed largely in 
connection with quantum optics, but they have been extended using QSD and MQSD to 
particles in traps [39], while Spiller and his collaborators 1461 have carried out some 
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interesting QSD studies of quantum circuit elements with a view to applications to Josephson 
junctions. 

The potential range of useful applications is far greater. In particular, there has  been 
no application to quantum effects in Ithe dynamics of molecules which interact strongly 
with gases or liquids. 'For isolated molecules, there are often transitions between many 
potential energy surfaces, and no clear way of localizing the molecule on one surface out of 
many. But in QSD, the interaction with the environment localizes the molecule into a small 
region around a phase point on one of many possible surfaces, so that MQSD for a molecule 
interacting with its environment would have considerable advantages over the numerical 
solution of the Schrodinger equation for an isolated molecule. 

It is also clear that the noise in quantum circuits is an environmental effect that could 
well be simulated by MQSD. This applies even more strongly to quantum computation, 
where the potentially rapid decoherence produced by thermal interaction could be a crucial 
limitation. In these cases a lot could be learned from individual MQSD runs, without the 
need to make the large number of simulations required to get good statistics. 
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